3.1259 \(\int \frac{B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=151 \[ \frac{2 B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{6 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{10 C \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{10 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d} \]

[Out]

(6*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (10*C*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*C*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*B*Sin[c + d*x
])/(5*d*Sec[c + d*x]^(3/2)) + (10*C*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.130235, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4221, 3010, 2748, 2635, 2639, 2641} \[ \frac{2 B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{6 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{10 C \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{10 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Sec[c + d*x]^(3/2),x]

[Out]

(6*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (10*C*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*C*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*B*Sin[c + d*x
])/(5*d*Sec[c + d*x]^(3/2)) + (10*C*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3010

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Dist[1/b, Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x
]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{3}{2}}(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\\ &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{5}{2}}(c+d x) (B+C \cos (c+d x)) \, dx\\ &=\left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{5}{2}}(c+d x) \, dx+\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{7}{2}}(c+d x) \, dx\\ &=\frac{2 C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{5} \left (3 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{7} \left (5 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{6 B \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{10 C \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}+\frac{1}{21} \left (5 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{6 B \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{10 C \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{21 d}+\frac{2 C \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{10 C \sin (c+d x)}{21 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.533668, size = 99, normalized size = 0.66 \[ \frac{\sqrt{\sec (c+d x)} \left (\sin (2 (c+d x)) (42 B \cos (c+d x)+15 C \cos (2 (c+d x))+65 C)+252 B \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+100 C \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{210 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(252*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 100*C*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2] + (65*C + 42*B*Cos[c + d*x] + 15*C*Cos[2*(c + d*x)])*Sin[2*(c + d*x)]))/(210*d)

________________________________________________________________________________________

Maple [B]  time = 1.079, size = 403, normalized size = 2.7 \begin{align*} -{\frac{2\,B}{5\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) +8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -3\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}}-{\frac{2\,C}{21\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 48\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{9}-120\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{7}+128\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}-72\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+5\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +16\,\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x)

[Out]

-2/5*B*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+8*s
in(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d-2/21*C*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(
1/2*d*x+1/2*c)^2)^(1/2)*(48*cos(1/2*d*x+1/2*c)^9-120*cos(1/2*d*x+1/2*c)^7+128*cos(1/2*d*x+1/2*c)^5-72*cos(1/2*
d*x+1/2*c)^3+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))+16*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/
2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c))/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (B + C \cos{\left (c + d x \right )}\right ) \cos{\left (c + d x \right )}}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/sec(d*x+c)**(3/2),x)

[Out]

Integral((B + C*cos(c + d*x))*cos(c + d*x)/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/sec(d*x + c)^(3/2), x)